观察,分析,猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=_.(n为整数)
问题描述:
观察,分析,猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=______.(n为整数)
答
∵1×2×3×4+1=[(1×4)+1]2=52,
2×3×4×5+1=[(2×5)+1]2=112,
3×4×5×6+1=[(3×6)+1]2=192,
4×5×6×7+1=[(4×7)+1]2=292,
∴n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2.
故答案为:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2.