已知等差数列an=4n-2,等比数列bn=2/4(n-1)(四的n减1次方分之二),设cn=an/bn,求cn前n项和Tn.
问题描述:
已知等差数列an=4n-2,等比数列bn=2/4(n-1)(四的n减1次方分之二),设cn=an/bn,求cn前n项和Tn.
答
cn=an/bn=[(4n-2)/2]*4^(n-1)=(2n-1)*4^(n-1)Tn=1+3*4+5*4^2+.+(2n-1)*4^(n-1)4Tn=4+3*4^2+5*4^3+...+(2n-1)*4^nTn-4Tn=1+2*4+2*4^2+...+2*4^(n-1)-(2n-1)*4^n-3Tn=1+2*4*[4^(n-1)-1]/(4-1)-(2n-1)*4^n=1+(8/3)*[4^(...