f(x)在[0,a]上连续,且在(0,a)内可导,f(a)=0,证明存在&属于(0,a)使f(&)+&f'(&)=0

问题描述:

f(x)在[0,a]上连续,且在(0,a)内可导,f(a)=0,证明存在&属于(0,a)使f(&)+&f'(&)=0

构造函数g(x)=xf(x)
则g(0)=0
g(a)=af(a)=0
所以在(0,a)内存在一点&,使得g'(&)=0
g'(&)=f(&)+&f'(&)=0
得证