在△ABC中,a、b、c分别为角A、B、C的对边已知向量M=(a,b)+n=(cosA,cosC)向量p=(sin(b+c)/2,2sina)若m//n,p^2=9求证△abc为等边三角形
问题描述:
在△ABC中,a、b、c分别为角A、B、C的对边已知向量M=(a,b)+n=(cosA,cosC)向量p=(sin(b+c)/2,2sina)若m//n,p^2=9求证△abc为等边三角形
答
三角形的三个内角A,B,C所对边的长分别为a,b,c,已知向量m=(a,b),向量n=(cosA,cosB),向量P=(2√2sin(B+C)/2,2sinA),若m平行于n,P方=9,【证明】m//nacosB=bcosA由正弦定理 sinAcosB=sinBcosAsinAcosB-sinBcosA=0s...