已知函数f(x)=ax/1+x2(a≠0,a∈R),判断f(x)在区间(-1,1)上的单调性.

问题描述:

已知函数f(x)=

ax
1+x2
(a≠0,a∈R),判断f(x)在区间(-1,1)上的单调性.

∵f(x)=

ax
1+x2

∴f′(x)=a•
1−x2
(1+x2)2

∴a>0,在区间(-1,1)上,f′(x)>0,f(x)在区间(-1,1)上的单调递增;
a<0,在区间(-1,1)上,f′(x)<0,f(x)在区间(-1,1)上的单调递减.