无论X取何值,多项式(m-1)x^3+2mx^2+(m+1)x+p=px^2-qx+p.求(m+P)^p-q的值
问题描述:
无论X取何值,多项式(m-1)x^3+2mx^2+(m+1)x+p=px^2-qx+p.求(m+P)^p-q的值
答
因为(m-1)x^3+2mx^2+(m+1)x+p=px^2-qx+p,
所以比较系数得m-1=0,2m=p,m+1=-q,
所以m=1,p=2,q=-2,
所以(m + P)^p - q =(1+2)^2-(-2)=9+2=11.