多项式x2-2xy+2y2+2y+5的最小值是_.
问题描述:
多项式x2-2xy+2y2+2y+5的最小值是______.
答
∵x2-2xy+2y2+2y+5,
=x2-2xy+y2+y2+2y+1+4;
=(x-y)2+(y+1)2+4,
∴当(x-y)2=0,(y+1)2=0时,原式最小,
∴多项式x2-2xy+2y2+2y+5的最小值是4.
故填:4.