若有理数a,b,c满足(a+2c-2)^2+‖4b-3c-4‖+‖a/2-4b-1‖=0,试求a^3n+1b^3n+2-c^4n+2

问题描述:

若有理数a,b,c满足(a+2c-2)^2+‖4b-3c-4‖+‖a/2-4b-1‖=0,试求a^3n+1b^3n+2-c^4n+2
‖ ‖是绝对值.
后面是求A的3N+1次方乘以B的3N+2次方减C的4N+2次方

(a+2c-2)^2+‖4b-3c-4‖+‖a/2-4b-1‖=0a+2c-2=04b-3c-4=0a/2-4b-1=0解方程组得:a=4b=1/4c=-1a^3n+1b^3n+2-c^4n+2=(ab)^(3n+1)*b-(-1)^(4n+2)=(4*1/4)^(3n+1)*1/4-1=1/4-1=-3/4