已知在等差数列An中,公差d不等于0,且a1,a5,a17成等比数列,则(a1+a5+a17)/(a2+a6+a18)=?

问题描述:

已知在等差数列An中,公差d不等于0,且a1,a5,a17成等比数列,则(a1+a5+a17)/(a2+a6+a18)=?

a5=a1+4d,a17=a1+16d因为a1,a5,a17成等比数列所以(a1+4d)^2=a1*(a1+16d)故(a1)^2+8a1*d+16d^2=(a1)^2+16a1*d即2d^2=a1*d因为d≠0所以a1=2d故(a1+a5+a17)/(a2+a6+a18)=[2d+(2d+4d)+(2d+16d)]/[(2d+d)+(2d+5d)+(2d+17d...