已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且Sn=2n+1−2. (1)求数列{an}、{bn}的通项公式; (2)设cn=abn,求数列{cn}的前n和Tn.
问题描述:
已知在递增等差数列{an}中,a1=2,a1,a3,a7成等比数列数列{bn}的前n项和为Sn,且Sn=2n+1−2.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=abn,求数列{cn}的前n和Tn.
答
∵a1=2,a1,a3,a7成等比数列∴a32=a1a7设等差数列的公差d,则(2+2d)2=2(2+6d),d>0∴d=1,an=n+1∵Sn=2n+1−2.∴b1=s1=2bn=sn-sn-1=2n+1-2-2n+2=2n(n≥2)当n=1时也适合∴bn=2n(2)∵cn=abn=2n+1∴Tn=...