数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)

问题描述:

数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
n=1时,左边=1*1=1
右边=1/6*1*2*3=1
左边=右边,等式成立!
假设n=k时成立 (k>1)即:
1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1/6)k(k+1)(k+2)
当n=k+1时;
左边
=1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1
=1*k+1*1+2(k-1)+2*1+…+k*1+【k+(k+1)】怎么来的?
=[1*k+2(k-1)+…+(k-1)*2+k*1]+【1+2+3+…+k+(k+1)】←为什么是一个等差数列?不是1+2+3+·······+3+2+1吗?
=(1/6)k(k+1)(k+2)+1+2+3+…+k+(k+1)
=(1/6)k(k+1)(k+2)+1/2*(k+1)*(k+2)
=(1/6)(k+1)(k+2)(k+3)
=(1/6)(k+1)[(k+1)+1][(k+1)+2]
= =没人吗

你应弄清原式左边是n项的和,当n=k+1时,就是k+1项的和,所以,1*(k+1)+2(k+1-1)+3(k+1-2)+…+ (k+1-1)*2+(k+1)*1=1*k+1*1+2(k-1)+2*1+3(k-2)+3*1+…+ k*1+[k+(k+1)](其中(k+1-1)*2+(k+1)*1=k*2+(k+1)*1= k*1+[k+(k+1)])...