如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于点E. 求证:OC2=OA•OE.
问题描述:
如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于点E.
求证:OC2=OA•OE.
答
证明:∵AD∥BC,∴
=OC OA
,OB OD
又∵BE∥CD,∴
=OE OC
,OB OD
∴
=OC OA
,OE OC
∴OC2=OA•OE.