在三角形ABC中,AB=√6-√2,C=30度,则AC+BC的最大值是
问题描述:
在三角形ABC中,AB=√6-√2,C=30度,则AC+BC的最大值是
我知答案是4
a=csinA/sinC b=csinB/sinC
a+b=c/sinC(sinA+sinB)
=2(√6-√2)( sinA+sinB) ①
=2(√6-√2)(1/2 cosA+(√3+2)/2 sinA) ②
=(√6-√2)cosA+(√6+√2)sinA
=4sin(15度+A)
答
因为C=30°,从而B=150°-A;
所以sinB=sin(150°-A)
=sin150°cosA-cos150°sinA
=1/2cosA+√3/2sinA
这样的话 sinA+sinB=1/2 cosA+(√3+2)/2 sinA)