设A,B为抛物线y=-3x^2-2x+k图像与X轴两个交点,M为抛物线顶点,当ΔMAB为等腰直角三角形时,求k值.

问题描述:

设A,B为抛物线y=-3x^2-2x+k图像与X轴两个交点,M为抛物线顶点,当ΔMAB为等腰直角三角形时,求k值.
详解...

因抛物线与x轴有两个相异的交点,
△=4-4k×(-3)>0,
得k>- 1/3,
∵∠AMB=90°,AM=BM,过M作MN⊥x轴于N,
∴MN= 1/2AB,
∵MN= ﹙4k×(-3)-4﹚/4×(-3)=k+ 1/3,
AB=√ (x1-x2)²,
= √(x1-x2)²-4x1x2,
= √(-2/3)2-4(-k/3),
= 2/3√﹙1+3k﹚,
∴k+ 1/3= 1/2× 2/3√﹙1+3k﹚.
解k1=0,k2=- 1/3(舍去).
k=0