已知E,F分别是正方体ABCD-A1B1C1D的棱AA1和棱CC1上的点,且AE=C1F,求证:四边形EBFD1是平行四边形.
问题描述:
已知E,F分别是正方体ABCD-A1B1C1D的棱AA1和棱CC1上的点,且AE=C1F,求证:四边形EBFD1是平行四边形.
答
在DD1上取DM=AE=C1F,连接CM,EM,
∵CF=D1M=CC1-C1F,CF∥D1M,
∴四边形CMD1F为平行四边形,
∴CM∥FD1,CM=FD1,
同理可证四边形ADME为平行四边形,
∴EM∥BC,EM=BC,
∴BCME为平行四边形,
∴BE∥CM,CM=BE,
∴BE∥FD1,BE=FD1,
∴四边形EBFD1是平行四边形.