函数f(x)的定义域为R,数列{an}满足an=f(an-1)(n∈N*且n≥2). (Ⅰ)若数列{an}是等差数列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k为非零常数,n∈N*且n≥2),求k的值; (Ⅱ)若f(
问题描述:
函数f(x)的定义域为R,数列{an}满足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若数列{an}是等差数列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k为非零常数,n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),数列{bn}的前n项和为Sn,对于给定的正整数m,如果
的值与n无关,求k的值. S(m+1)n Smn
答
(本小题共13分)(Ⅰ)当n≥2时,因为an=f(an-1),f(an)-f(an-1)=k(an-an-1),所以an+1-an=f(an)-f(an-1)=k(an-an-1).因为数列{an}是等差数列,所以an+1-an=an-an-1.因为 an+1-an=k(an-an-1...