等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求1/S1+1/S2+…+1/Sn.
问题描述:
等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求
+1 S1
+…+1 S2
. 1 Sn
答
∵等差数列{an}的首项a1=3,公差d=2,
∴前n项和Sn=na1+
d=3n+n(n−1) 2
×2=n2+2n(n∈N*),n(n−1) 2
∴
=1 Sn
=1
n2+2n
=1 n(n+2)
(1 2
−1 n
),1 n+2
∴
+1 S1
+…+1 S2
=1 Sn
[(1−1 2
)+(1 3
−1 2
)+(1 4
−1 3
)+…+(1 5
−1 n−1
)+(1 n+1
−1 n
)]1 n+2
=
−3 4
.2n+3 2(n+1)(n+2)