等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求1/S1+1/S2+…+1/Sn.

问题描述:

等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求

1
S1
+
1
S2
+…+
1
Sn

∵等差数列{an}的首项a1=3,公差d=2,
∴前n项和Sn=na1+

n(n−1)
2
d=3n+
n(n−1)
2
×2=n2+2n(n∈N*),
1
Sn
1
n2+2n
1
n(n+2)
1
2
(
1
n
1
n+2
)

1
S1
+
1
S2
+…+
1
Sn
=
1
2
[(1−
1
3
)+(
1
2
1
4
)+(
1
3
1
5
)+…+(
1
n−1
1
n+1
)+(
1
n
1
n+2
)]

=
3
4
2n+3
2(n+1)(n+2)