若正多边形的边心距和半径的比为1:2.则这个正多边形的边数为

问题描述:

若正多边形的边心距和半径的比为1:2.则这个正多边形的边数为

正多边形的中心点与各个顶点连接可得到相同的等腰三角形
根据等腰三角形三线合一原理,底边上的高(就是边心距)平分底边
由于边心距和半径的比为1:2
可以发现是等腰三角形的底角=30°,因为正多边形得内角=2倍的底角=60°
所以这个正多边形的边数为3,即这个正多边形是正三角形.