有一个m×n的矩阵A,它的秩是n,也就是说它的列向量是独立的,那么怎么证明A的转置×A是一个可逆矩阵?
问题描述:
有一个m×n的矩阵A,它的秩是n,也就是说它的列向量是独立的,那么怎么证明A的转置×A是一个可逆矩阵?
答
A的转置×A的秩=A的秩=n,而A的转置×A是n*n矩阵,于是A的转置×A是满秩矩阵,所以可逆
有一个m×n的矩阵A,它的秩是n,也就是说它的列向量是独立的,那么怎么证明A的转置×A是一个可逆矩阵?
A的转置×A的秩=A的秩=n,而A的转置×A是n*n矩阵,于是A的转置×A是满秩矩阵,所以可逆