将边长分别为2,22,32,42…的正方形的面积记作S1,S2,S3,S4…,计算S2-S1,S3-S2,S4-S3….若边长为n2(n为正整数)的正方形面积记作Sn,根据你的计算结果,猜想Sn+1-Sn=_.

问题描述:

将边长分别为

2
,2
2
,3
2
,4
2
…的正方形的面积记作S1,S2,S3,S4…,计算S2-S1,S3-S2,S4-S3….若边长为n
2
(n为正整数)的正方形面积记作Sn,根据你的计算结果,猜想Sn+1-Sn=______.

∵S1=2,S2=8,S3=18,S4=32,
∴S2-S1=6,S3-S2=10,S4-S3=14,
据上可得出Sn+1-Sn=2(n+1+n)=4n+2,
故答案为:4n+2.