在等比数列{an}中,a1=1,前n项和为Sn.若数列{Sn+1/2}也是等比数列,则Sn等于_.

问题描述:

在等比数列{an}中,a1=1,前n项和为Sn.若数列{Sn+

1
2
}也是等比数列,则Sn等于______.

当公比为1时,Sn=n,数列{Sn+

1
2
}为数列{n+
1
2
}为公差为1的等差数列,不满足题意;
当公比不为1时,Sn=
1−qn
1−q
,∴Sn+
1
2
=
1−qn
1−q
+
1
2
,Sn+1+
1
2
=
1−qn+1
1−q
+
1
2

Sn+1+
1
2
Sn+
1
2
=
2qn+1+q−3
2qn+q−3
=
q(2qn+q−3)−q2+4q−3
2qn+q−3
=q+
q2+4q−3
2qn+q−3

∵数列{Sn+
1
2
}是等比数列
∴-q2+4q-3=0
∵q≠1,∴q=3
∴Sn=
1−qn
1−q
=
1−3n
1−3
=
1
2
(3n−1)

故答案为:
1
2
(3n−1)