已知函数f(x)的定义域为R.若∃常数c>0,对∀x∈R,有f(x+c)>f(x-c),则称函数f(x)具有性质P.给定下列三个函数: ①f(x)=2x; ②f(x)=sinx; ③f(x)=x3-x. 其中,具有性质P的
问题描述:
已知函数f(x)的定义域为R.若∃常数c>0,对∀x∈R,有f(x+c)>f(x-c),则称函数f(x)具有性质P.给定下列三个函数:
①f(x)=2x; ②f(x)=sinx; ③f(x)=x3-x.
其中,具有性质P的函数的序号是______.
答
①因为f(x)=2x 是R上的增函数,所以满足f(x+c)>f(x-c),故此函数f(x)具有性质P. ②因为f(x)=sinx的最小正周期为2π,不是在R上的增函数,所以不满足f(x+c)>f(x-c),故此函数f(x)具有性质P....