四边形ABCD中,∠A=140°,∠D=80°,若∠B=∠C试求出∠C的度数.
问题描述:
四边形ABCD中,∠A=140°,∠D=80°,若∠B=∠C试求出∠C的度数.
1)如图1,若∠B=∠C试求出∠C的度数.
(2)如图2,若∠ABC得角平分线BE交DC于点E,且BE‖AD,试求出∠C的度数;
(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.
答
1:∠C=70
2:∠C=60
3:∠BEC=1101)因为四边形内角和360度,所以∠B+∠C=140度,因为∠B=∠C所以∠C=70度(2)∵BE//AD∴∠D=∠CEB=80°,∠EBA=180°-∠A=40° ∵BE是平分线∴∠CBE=40°所以∠C=180-∠CBE-∠CEB=180-80-40=60(3)∵∠BEC=180-∠EBC-∠ECB而 ∠EBC=1/2∠ABC,∠ECB=1/2∠BCD,即∠EBC+∠ECB=1/2(∠ABC+∠BCD)。∠ABC+∠BCD =360- ∠A-∠D=360-140-80=140∴∠BEC=110