求y=(arcsinx)^2的二阶导数
问题描述:
求y=(arcsinx)^2的二阶导数
答
(arcsinx)'=1/√(1-x^2)
y=(arcsinx)^2
y'=2arcsinx/√(1-x^2)
y''=[2/√(1-x^2)*√(1-x^2)-2arcsinx*(-x/√(1-x^2))]/(1-x^2)
=2(1+xarcsinx/√(1-x^2))/(1-x^2)