求∫(tanx^2+cotx^2)dx

问题描述:

求∫(tanx^2+cotx^2)dx

∫(tan²x+cot²x) dx
= ∫tan²x dx + ∫cot²x dx
= ∫(sec²x-1) dx + ∫(csc²x-1) dx
= tanx - x - cotx - x + C
= tanx - cotx - 2x + C