如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为4.若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(

问题描述:

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为4.若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=a,CD=b.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求a•b的值;
(3)在旋转过程中,当△AFG旋转到如图2的位置时,AG与BC交于点E,AF的延长线与CB的延长线交于点D,那么a•b的值是否发生了变化?为什么?

(1)△ADE∽△ABE;△ACD∽△ABE.
下面进行证明△ACD∽△ABE,
∵∠FAG=∠ACB=45°,
∴∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,
∴∠BAE=∠CDA,
又∵∠B=∠C=45°,
∴△ABE∽△DCA,
由于D在BC上,且D点与B点不重合,
∴△ADE不∽△ABE;
同理可得△ADE∽△ABE;
(2)∵△ACD∽△ABE,

BE
CA
=
BA
CD

由依题意,可知:CA=BA=2
2

a
2
2
=
2
2
b

∴a•b=8;
(3)不变.
∵∠BEA=∠EAC+45°,∠CAD=45°+∠EAC,
∴∠BEA=∠CAD,
又∵∠ABE=∠DCA=45°,
∴△EBA∽△ACD,
BE
AB
=
AC
DC

∴BE•CD=AB•AC=2
2
×2
2
=8.