如图,在同一平面内,将两个全等的等腰直角△ABC和△AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对加以证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.

问题描述:

如图,在同一平面内,将两个全等的等腰直角△ABC和△AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对加以证明.
(2)求m与n的函数关系式,直接写出自变量n的取值范围.

(1)△ABE∽△DAE,△DCA∽△DAE,∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA又∠B=∠BAE=45°∴△ABE∽△DAE.(2)由(1)可知△ABE∽△DAE,△DCA∽△DAE,则有△ABE∽△DCA.∴ABCD=BEAC又∵△ABC是...
答案解析:(1)根据“AAA”,可知△ABE∽△DAE,△DCA∽△DAE;
(2)由(1)知,△ABE∽△DAE,△DCA∽△DAE,则有△ABE∽△DCA,因为相似三角形的对应边成比例,所以,

AB
CD
BE
AC
,再把已知数据代入求解即可.
考试点:相似三角形的判定与性质;根据实际问题列反比例函数关系式.

知识点:本题主要考查了相似三角形的判定(判定定理有:AA、SSS、SAS等)与性质(对应边成比例,对应角相等)和反比例函数的一般应用.