如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,(1)直角梯形ABCD的面积为______cm2;(2)当t=______秒时,四边形PQCD成为平行四边形?(3)当t=______秒时,AQ=DC;(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.

问题描述:

如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,
(1)直角梯形ABCD的面积为______cm2
(2)当t=______秒时,四边形PQCD成为平行四边形?
(3)当t=______秒时,AQ=DC;
(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.

(1)作DM⊥BC于点M.则四边形ABMD是平行四边形∴DM=AB=6cm.在直角△CDM中,CM=CD2−DM2=8cm∴BC=BM+CM=4+8=12cm∴直角梯形ABCD的面积为12(AD+BC)•AB=48cm2;(2)当PD=CQ时,四边形PQCD成为平行四边形即4-4t=5t...
答案解析:(1)作DM⊥BC于点M,在直角△CDM中,根据勾股定理即可求得CM,得到下底边的长,根据梯形面积公式即可求解.
(2)当PD=CQ时,四边形PQCD成为平行四边形.
(3)在直角△ABQ中利用勾股定理即可求解.
(4)连接QD,根据S△DQC=S△DQC,即可求解.
考试点:直角梯形;平行四边形的判定.


知识点:本题综合考查了平行四边形的判定方法,梯形的计算,梯形问题一般通过作高线转化为三角形与平行四边形的问题.