垂直关系

问题描述:

垂直关系
1.在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E,F分别是AB,CD的中点
(1)求证:CD⊥PD
(2)若PA=PD,求证:EF⊥平面PCD
2.正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,点E在CC1上且C1E=3EC,求证:A1C⊥平面BED
第1题中是PA=AD E,F分别是AB,PC的中点

1:1):因为CD⊥PA,CD⊥DA,DA\PA属于面PAD,所以CD⊥面PAD,因为PD属于面PAD,所以CD⊥PD2):因为E,F分别是AB,PC的中点,三角形PAE和三角形EBC全等,所以PE=EC,所以三角形PEC是等腰三角形.因为F是PC中点,所以EF⊥PC.因为EF⊥...