在△ABC中,角A、B、C所对的对边长分别为a、b、c,sinA、sinB、sinC成等比数列,且c=2a,则cosB的值为(  ) A.14 B.34 C.24 D.23

问题描述:

在△ABC中,角A、B、C所对的对边长分别为a、b、c,sinA、sinB、sinC成等比数列,且c=2a,则cosB的值为(  )
A.

1
4

B.
3
4

C.
2
4

D.
2
3

sinA、sinB、sinC成等比数列,则有sin2B=sinA×sinC,由正弦定理知有b2=ac,
∵c=2a,
∴由余弦定理cosB=

a2+c2−b2
2ac
=
3
4

故选:B.