求过圆:x2+y2-2x+2y+1=0与圆:x2+y2+4x-2y-4=0的交点,圆心在直线:x-2y-5=0的圆的方程.
问题描述:
求过圆:x2+y2-2x+2y+1=0与圆:x2+y2+4x-2y-4=0的交点,圆心在直线:x-2y-5=0的圆的方程.
答
设所求的圆为C,∵圆C经过圆x2+y2-2x+2y+1=0与圆x2+y2+4x-2y-4=0的交点,∴设圆C方程为x2+y2-2x+2y+1+λ(x2+y2+4x-2y-4)=0,化简得x2+y2+4λ−21+λx+2−2λ1+λy+1−4λ1+λ=0,可得圆心坐标为C(-2λ−11+λ,-1...