求解非齐次线性方程组x1+x2+x3=3,x2-x3=0,-x1-x2+2x3=0,2x1-x2+x3=2

问题描述:

求解非齐次线性方程组x1+x2+x3=3,x2-x3=0,-x1-x2+2x3=0,2x1-x2+x3=2

增广矩阵:x1 x2 x3 b1 1 1 3 (1)0 1 -1 0 (2)-1 -1 2 0 (3)2 -1 1 2 (4)由(4)和(2)导出:2x1=2,x1=1再由(1),导出:1+2x2=3 解出:x2=x3=1最后得到:x1 = x2 = x3 = 1.(5)方程(1)(2)(3)(4)未发现...