为什么不在平面内,与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹不叫做椭圆?
问题描述:
为什么不在平面内,与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹不叫做椭圆?
答
关键在于“不在平面内”,因为如果不在平面内的话,点的轨迹是成空间状的(可以向四周延伸),而不是椭圆(椭圆是平面)谢谢
为什么不在平面内,与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹不叫做椭圆?
关键在于“不在平面内”,因为如果不在平面内的话,点的轨迹是成空间状的(可以向四周延伸),而不是椭圆(椭圆是平面)谢谢