已知等差数列{an}中,an≠0,公差d≠0,(1)求证,方程anx^2+2a(n+1)x+2a(n+2),
问题描述:
已知等差数列{an}中,an≠0,公差d≠0,(1)求证,方程anx^2+2a(n+1)x+2a(n+2),
(2)设(1)中方程的另一根为{bn},求证{1/(bn+1)}为等差数列
答
证明 (1)∵{an}是等差数列,∴2a(k+1)=ak+a(k+2),故方程akx^2+2ak+1x+ak+2=0可变为[akx+a(k+2)](x+1)=0,∴当k取不同自然数时,原方程有一个公共根-1 (2)原方程另一根为bn=xk=- a(k+2)/ak=(ak+2d)/ak=-1-2d/ak∴1/(...