如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为3,则点B到AC的距离是(  ) A.5 B.52 C.522 D.25

问题描述:

如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为3,则点B到AC的距离是(  )
A. 5
B. 5

2

C.
5
2
2

D. 2
5


过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离
∵AD⊥l3,CE⊥l3
∴∠ADB=∠ABC=∠CEB=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△DAB和△EBC中

∠DAB=∠EBC
∠ADB=∠BEC
AB=BC

∴△DAB≌△EBC,
∴AD=BE=3,
∵CE=3+1=4,
在△CEB中,由勾股定理得:AB=BC=5,AC=5
2

由三角形的面积公式得:S△ABC=
1
2
AB×BC=
1
2
AC×BF,
即5×5=5
2
BF,
即BF=
5
2
2

故选C.