如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为3,则点B到AC的距离是( ) A.5 B.52 C.522 D.25
问题描述:
如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为3,则点B到AC的距离是( )
A. 5
B. 5
2
C.
5 2
2
D. 2
5
答
过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离
∵AD⊥l3,CE⊥l3,
∴∠ADB=∠ABC=∠CEB=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△DAB和△EBC中
,
∠DAB=∠EBC ∠ADB=∠BEC AB=BC
∴△DAB≌△EBC,
∴AD=BE=3,
∵CE=3+1=4,
在△CEB中,由勾股定理得:AB=BC=5,AC=5
,
2
由三角形的面积公式得:S△ABC=
AB×BC=1 2
AC×BF,1 2
即5×5=5
BF,
2
即BF=
,5
2
2
故选C.