如图,抛物线y=1/2x2-x-3/2与x轴交于A、B两点,D为y轴上一点,E为抛物线上一点,是否存在这样的点D和E,使以A、D、B、E为顶点的四边形为平行四边形?若存在,求出D、E的坐标;若不存在,请

问题描述:

如图,抛物线y=

1
2
x2-x-
3
2
与x轴交于A、B两点,D为y轴上一点,E为抛物线上一点,是否存在这样的点D和E,使以A、D、B、E为顶点的四边形为平行四边形?若存在,求出D、E的坐标;若不存在,请说明理由.

∵y=

1
2
x2-x-
3
2

∴当y=0时,
1
2
x2-x-
3
2
=0,
解得x=-1或3,
∴A点的坐标为(-1,0),B点的坐标为(3,0),
AB=3-(-1)=4.
假设存在这样的点D和E,能够使以A、D、B、E为顶点的四边形为平行四边形.分两种情况:
①当AB为平行四边形的边时,则DE=AB=4.
∵D为y轴上一点,D点横坐标为0,
∴E点横坐标为:0+4=4或0-4=-4,
∴E1(4,
5
2
),E2(-4,
21
2
),
∴D1(0,
5
2
),D2(0,
21
2
);
②当AB为平行四边形的对角线时,
∵A(-1,0),B(3,0),
∴AB的中点坐标为(1,0),
∵D为y轴上一点,D点横坐标为0,
∴E点横坐标为:2,
∴E3(2,-
3
2
),
∵平行四边形的对角线互相平分,
∴点D3的坐标为(0,
3
2
),
综上可知,存在这样的点D和E,能够使以A、D、B、E为顶点的四边形为平行四边形,此时D1(0,
5
2
),D2(0,
21
2
),D3(0,
3
2
),E1(4,
5
2
),E2(-4,
21
2
),E3(2,-
3
2
).