设函数f(x)在R内有定义且满足f(x+π)=f(x)+sinx,证明:函数f(x)是以周期2π的周期函数
问题描述:
设函数f(x)在R内有定义且满足f(x+π)=f(x)+sinx,证明:函数f(x)是以周期2π的周期函数
答
因为f(x+π)=f(x)+sinx
f(x+2π)=f(x+π)+sin(x+π)=f(x)+sinx -sinx=f(x)
函数f(x)是以周期2π的周期函数为什么要减sinx呢sin(x+π)=-sinx