已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立. 证明: (1)函数y=f(x)是R上的减函数; (2)函数y=f(x)是奇函数.

问题描述:

已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
证明:
(1)函数y=f(x)是R上的减函数;
(2)函数y=f(x)是奇函数.

证明:(1)设x1>x2,则x1-x2>0,∴f(x1-x2)<0,而f(a+b)=f(a)+f(b),∴f(x1)=f(x1-x2+x2)=f(x1-x2)+f(x2)<f(x2)∴函数y=f(x)是R上的减函数;(2)由f(a+b)=f(a)+f(b)得f(x-x)=f(x...