设f(x)连续,则ddx∫x0tf(x2−t2)dt=(  ) A.xf(x2) B.-xf(x2) C.2xf(x2) D.-2xf(x2)

问题描述:

设f(x)连续,则

d
dx
x0
tf(x2t2)dt=(  )
A. xf(x2
B. -xf(x2
C. 2xf(x2
D. -2xf(x2

令:u=x2-t2
则:dt2=-du;

d
dx
x0
tf(x2t2)dt
=
d
dx
x0
1
2
f(x2t2)dt2

=
d
dx
0x2
1
2
f(u)du

=
d
dx
x20
1
2
f(u)du

=
1
2
f(x2)2x
=xf(x2
故本题选:A.