设f(x)连续,则ddx∫x0tf(x2−t2)dt=(  )A. xf(x2)B. -xf(x2)C. 2xf(x2)D. -2xf(x2)

问题描述:

设f(x)连续,则

d
dx
x
0
tf(x2t2)dt=(  )
A. xf(x2
B. -xf(x2
C. 2xf(x2
D. -2xf(x2

令:u=x2-t2
则:dt2=-du;

d
dx
x
0
tf(x2t2)dt
=
d
dx
x
0
1
2
f(x2t2)dt2

=
d
dx
0
x2
1
2
f(u)du

=
d
dx
x2
0
1
2
f(u)du

=
1
2
f(x2)2x
=xf(x2
故本题选:A.
答案解析:令u=x2-t2,在利用变积分上限求导法则,即可求解.
考试点:积分上限函数及其求导.
知识点:本题主要考查了变积分上限的求导法则,属于基础题,考生需要完全掌握.