已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值

问题描述:

已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值

已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值(1)解析:∵函数fx=ln(x)-ax(a∈R)令a=2,则函数fx=ln(x)-2x令f’(x)=1/x-2=0==>x=1/2f’’(x)=-1/x^2x=1/a∴函数f(x)在x...太给力了,你的回答完美解决了我的问题!