1.已知函数f(x)=cos(ωx-π/6)(ω>0)的最小正周期为π,求f(x)的单调递减区间.2.已知定义在R上的函数y=f(x)对任意实数满足条件 1.f(x)=f(-x)2.f(-x+π)=f(x)且当x∈【0,π/2】时,f(x)=sinx,求f(-7π/3)的值.
问题描述:
1.已知函数f(x)=cos(ωx-π/6)(ω>0)的最小正周期为π,求f(x)的单调递减区间.
2.已知定义在R上的函数y=f(x)对任意实数满足条件 1.f(x)=f(-x)2.f(-x+π)=f(x)且当x∈【0,π/2】时,f(x)=sinx,求f(-7π/3)的值.
答
1.最小正周期=2π/ω=π,所以ω=2,f(x)=cos(2x-π/6)∴2kπ≤2x-π/6≤2kπ+π∴kπ+π/12≤x≤kπ+7π/12,k∈Z2.∵f(x)=f(-x)∴f(x)是偶函数∵f(-x+π)=f(x)∴他的最小正周期是π∴f(-7π/3)=f(-7...