数列{an},a1=1,3anan-1+an-an-1=0(n≥2).1、求an;2、若λan+1/an+1≥λ对任意n≥2恒成立,求实数λ的
问题描述:
数列{an},a1=1,3anan-1+an-an-1=0(n≥2).1、求an;2、若λan+1/an+1≥λ对任意n≥2恒成立,求实数λ的
3、设bn=√an,{bn}的前n项和为Tn,求证:Tn>2/3(根号下3n+1 -1)
答
3anan-1+an-an-1=0
两边同时除以anan-1得
1/an-1 - 1/an +3=0
1/an=1/an-1 + 3
1/an= 3n -2
an= 1/(3n -2)