Y=(1+X分之X)的次方x的导数

问题描述:

Y=(1+X分之X)的次方x的导数

lny=xln[x/(x+1)]求导(1/y)*y'=1*ln[x/(x+1)]+x*1/[x/(x+1)]*[x/(x+1)]'=ln[x/(x+1)]+x/[x/(x+1)]*](x+1)-x]/(x+1)²]=ln[x/(x+1)]+1/(x+1)所以y'=[x/(x+1)]^x*{ln[x/(x+1)]+1/(x+1)}