如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.

问题描述:

如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.

证明:连接PB,PC,
∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分线上,
∴PC=PB,
在Rt△PMC和Rt△PNB中

PC=PB
PM=PN

∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.