已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M. (1)求证:AB=CD; (2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

问题描述:

已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

(1)证明:∵AF平分∠BAC,∴∠CAD=∠DAB=12∠BAC,∵D与A关于E对称,∴E为AD中点,∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD...