设数列{an}的前n项和为Sn,若{an}和{Sn+n}都是公差为d(d≠0)的等差数列,则a1= _ .

问题描述:

设数列{an}的前n项和为Sn,若{an}和{

Sn+n
}都是公差为d(d≠0)的等差数列,则a1= ___ .

依题意,{an}和{Sn+n}都是公差为d(d≠0)的等差数列,Sn是关于n的二次函数,常数项为0,∴Sn+n=dn,∴Sn=d2n2-n,∴n≥2,Sn-1=d2(n-1)2-(n-1),两式相减可得an=2d2n-d2-1∵an=dn+c,∴2d2=d,∵d≠0,∴d=12,...