已知经过同一点的n(n∈N*,n≥3)个平面,任意三个平面不经过同一条直线.若这n个平面将空间分成f(n)个部分,则f(3)=_,f(n)=_.

问题描述:

已知经过同一点的n(n∈N*,n≥3)个平面,任意三个平面不经过同一条直线.若这n个平面将空间分成f(n)个部分,则f(3)=______,f(n)=______.

因为两个相交平面把空间分成四个部分,若第三个平面和前两相交平面经过同一点,且三个平面不过同一直线,则第三个平面与前两个平面的交线相交,这样能把空间分成8个部分,即f(3)=8=32-3+2;
有n个面时,再添加1个面,与其它的n个面有n条交线,n条交线将此平面分成2n个部分,
每一部分将其所在空间一分为二,
则 f(n+1)=f(n)+2n.
利用叠加法,
则 f(n)-f(1)=[2+4+6+…+2(n-1)]
=

[2+2(n−1)](n−1)
2
n2−n
∴f(n)=n2-n+2.
故答案为8,n2-n+2.