1+1/2+1/3+……+1/n与ln(n+1)及lnn的大小关系及证明
问题描述:
1+1/2+1/3+……+1/n与ln(n+1)及lnn的大小关系及证明
答
已知x>ln(1+x),
1>ln(1+1)
1/2>ln(1+1/2)
1/3>ln(1+1/3)
.1/n>>ln(1+1/n)
累加得1+1/2+1/3+...+1/n>ln2+ln(3/2)+ln(4/3)+...+ln(1+1/n)=ln(2×3/2×4/3×...×(1+n)/n)=ln(n+1)