等差数列{an}中,a3=8,a7=20,若数列{1anan+1}的前n项和为425,则n的值为( ) A.14 B.15 C.16 D.18
问题描述:
等差数列{an}中,a3=8,a7=20,若数列{
}的前n项和为1
anan+1
,则n的值为( )4 25
A. 14
B. 15
C. 16
D. 18
答
设等差数列的首项为a,公差为d,因为a3=8,a7=20,所以a+2d=8,a+6d=20,解得a=3,a=2.an=3n-1;又因为1an•an+1=1(3n−1)(3n+2)=13(13n−1-13n+2),所以Sn=13(12-15+15-18+18-111+…+13n−1-13n+1)=13(12-13n...